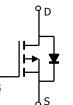


## AO4403

# P-Channel Enhancement Mode Field Effect Transistor


### **General Description**

The AO4403 uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications. The source leads are separated to allow a Kelvin connection to the source, which may be used to bypass the source inductance.

#### Features

$$\begin{split} V_{DS} \left( V \right) &= -30V \\ I_D &= -6.1 \ A \\ R_{DS(ON)} &< 46m\Omega \ (V_{GS} &= -10V) \\ R_{DS(ON)} &< 61m\Omega \ (V_{GS} &= -4.5V) \\ R_{DS(ON)} &< 117m\Omega \ (V_{GS} &= -2.5V) \end{split}$$





| Absolute Maximum Ratings T <sub>A</sub> =25°C unless otherwise noted |                                                          |                                                                                                                                                                                                                             |                                                         |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|
| Parameter                                                            |                                                          | Maximum                                                                                                                                                                                                                     | Units                                                   |  |  |  |  |  |  |
| Drain-Source Voltage                                                 |                                                          | -30                                                                                                                                                                                                                         | V                                                       |  |  |  |  |  |  |
|                                                                      | $V_{GS}$                                                 | ±12                                                                                                                                                                                                                         | V                                                       |  |  |  |  |  |  |
| T <sub>A</sub> =25°C                                                 |                                                          | -6.1                                                                                                                                                                                                                        |                                                         |  |  |  |  |  |  |
| T <sub>A</sub> =70°C                                                 | I <sub>D</sub>                                           | -5.1                                                                                                                                                                                                                        | А                                                       |  |  |  |  |  |  |
| Pulsed Drain Current <sup>B</sup>                                    |                                                          | -60                                                                                                                                                                                                                         |                                                         |  |  |  |  |  |  |
| T <sub>A</sub> =25°C                                                 | P_                                                       | 3                                                                                                                                                                                                                           | - w                                                     |  |  |  |  |  |  |
| T <sub>A</sub> =70°C                                                 | 'D                                                       | 2.1                                                                                                                                                                                                                         |                                                         |  |  |  |  |  |  |
| Junction and Storage Temperature Range                               |                                                          | -55 to 150                                                                                                                                                                                                                  | °C                                                      |  |  |  |  |  |  |
|                                                                      | $ \begin{array}{c}                                     $ | $\begin{array}{c c} & Symbol \\ \hline P & V_{DS} \\ \hline P & V_{GS} \\ \hline T_A = 25^{\circ}C \\ \hline T_A = 70^{\circ}C \\ \hline P_D \\ \hline T_A = 70^{\circ}C \\ \hline T_A = 70^{\circ}C \\ \hline \end{array}$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |  |  |  |  |

| Thermal Characteristics                  |              |                     |     |     |       |  |  |  |
|------------------------------------------|--------------|---------------------|-----|-----|-------|--|--|--|
| Parameter                                |              | Symbol              | Тур | Мах | Units |  |  |  |
| Maximum Junction-to-Ambient <sup>A</sup> | t ≤ 10s      | D                   | 31  | 40  | °C/W  |  |  |  |
| Maximum Junction-to-Ambient <sup>A</sup> | Steady-State | R <sub>0JA</sub>    | 59  | 75  | °C/W  |  |  |  |
| Maximum Junction-to-Lead <sup>C</sup>    | Steady-State | $R_{	ext{	heta}JL}$ | 16  | 24  | °C/W  |  |  |  |



#### Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)

| Symbol                                                | Parameter                                   | Conditions                                                                                  |          | Min   | Тур  | Max  | Units  |
|-------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|----------|-------|------|------|--------|
| STATIC                                                | PARAMETERS                                  |                                                                                             |          |       |      |      |        |
| BV <sub>DSS</sub>                                     | Drain-Source Breakdown Voltage              | I <sub>D</sub> =-250μA, V <sub>GS</sub> =0V                                                 |          | -30   |      |      | V      |
| I <sub>DSS</sub> Zero Gate Voltage Drain Curre        | Zero Gate Voltage Drain Current             | V <sub>DS</sub> =-24V, V <sub>GS</sub> =0V                                                  |          |       |      | -1   | μA     |
|                                                       | Zero Gale Vollage Drain Current             |                                                                                             | TJ=55°C  |       |      | -5   | μΑ     |
| I <sub>GSS</sub>                                      | Gate-Body leakage current                   | V <sub>DS</sub> =0V, V <sub>GS</sub> =±12V                                                  |          |       |      | ±100 | nA     |
| V <sub>GS(th)</sub>                                   | Gate Threshold Voltage                      | $V_{DS}=V_{GS}$ $I_{D}=-250\mu A$                                                           |          | -0.7  | -1   | -1.3 | V      |
| I <sub>D(ON)</sub>                                    | On state drain current                      | $V_{GS}$ =-4.5V, $V_{DS}$ =-5V                                                              |          |       |      |      | Α      |
| R <sub>DS(ON)</sub> Static Drain-Source On-Resistance |                                             | V <sub>GS</sub> =-10V, I <sub>D</sub> =-6.1A                                                |          |       | 38   | 46   | mΩ     |
|                                                       | Static Drain Source On Pesistance           |                                                                                             | TJ=125°C |       |      | 70   | 1115.2 |
|                                                       | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-5A |                                                                                             |          | 49    | 61   | mΩ   |        |
|                                                       |                                             | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-1A                                                 |          |       | 76   | 117  | mΩ     |
| <b>g</b> <sub>FS</sub>                                | Forward Transconductance                    | V <sub>DS</sub> =-5V, I <sub>D</sub> =-5A                                                   |          | 7     | 11   |      | S      |
| $V_{SD}$                                              | Diode Forward Voltage                       | I <sub>S</sub> =-1A,V <sub>GS</sub> =0V                                                     |          | -0.75 | -1   | V    |        |
| l <sub>s</sub>                                        | Maximum Body-Diode Continuous Curr          | rent                                                                                        |          |       | -4.2 | Α    |        |
| DYNAMI                                                | C PARAMETERS                                |                                                                                             | ·        |       |      |      |        |
| C <sub>iss</sub>                                      | Input Capacitance                           | V <sub>GS</sub> =0V, V <sub>DS</sub> =-15V, f=1MHz                                          |          |       | 940  |      | pF     |
| C <sub>oss</sub>                                      | Output Capacitance                          |                                                                                             |          |       | 104  |      | pF     |
| C <sub>rss</sub>                                      | Reverse Transfer Capacitance                |                                                                                             |          |       | 73   |      | pF     |
| R <sub>g</sub>                                        | Gate resistance                             | V <sub>GS</sub> =0V, V <sub>DS</sub> =0V, f=1MHz                                            |          |       | 6    |      | Ω      |
| SWITCH                                                | ING PARAMETERS                              |                                                                                             |          |       |      |      |        |
| Qg                                                    | Total Gate Charge                           | V <sub>GS</sub> =-4.5V, V <sub>DS</sub> =-15V, I <sub>D</sub> =-5A                          |          |       | 9.4  |      | nC     |
| Q <sub>gs</sub>                                       | Gate Source Charge                          |                                                                                             |          |       | 2    |      | nC     |
| Q <sub>gd</sub>                                       | Gate Drain Charge                           |                                                                                             |          |       | 3    |      | nC     |
| t <sub>D(on)</sub>                                    | Turn-On DelayTime                           | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-15V, R <sub>L</sub> =2.4Ω,<br>R <sub>GEN</sub> =6Ω |          |       | 7.6  |      | ns     |
| t <sub>r</sub>                                        | Turn-On Rise Time                           |                                                                                             |          |       | 8.6  |      | ns     |
| t <sub>D(off)</sub>                                   | Turn-Off DelayTime                          |                                                                                             |          |       | 44.7 |      | ns     |
| t <sub>f</sub>                                        | Turn-Off Fall Time                          |                                                                                             |          |       | 16.5 |      | ns     |
| t <sub>rr</sub>                                       | Body Diode Reverse Recovery Time            | $I_F$ =-5A, dI/dt=100A/µs                                                                   |          | 22.7  |      | ns   |        |
| Q <sub>rr</sub>                                       | Body Diode Reverse Recovery Charge          | I <sub>F</sub> =-5A, dI/dt=100A/μs                                                          |          | 15.9  |      | nC   |        |

A: The value of  $R_{0JA}$  is measured with the device mounted on  $1in^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A = 25^{\circ}$ C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R  $_{\rm 0JA}$  is the sum of the thermal impedence from junction to lead R  $_{\rm 0JL}$  and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using  $80 \mu s$  pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in<sup>2</sup> FR-4 board with 2oz. Copper, in a still air environment with  $T_A=25^{\circ}C$ . The SOA curve provides a single pulse rating.